lunes, 9 de marzo de 2015

TEOREMA DE MEDIANAS

Teorema de Euclides referido a un cateto

“En un triángulo rectángulo la medida de cada cateto es media proporcional geométrica entre las medidas de la hipotenusa y su proyección sobre ella.”
Demostración:
x
Si se tiene un triángulo ABC cualquiera, rectángulo en C, y se proyectan los catetos sobre la hipotenusa, se tiene la siguiente figura (dercha):

donde
DB = p (proyección del cateto a (CB) sobre la hipotenusa)
AD = q (proyección del cateto b (AC) sobre la hipotenusa)
c = p + q

Por semejanza (~) de triángulos, el   ΔACB ~  ΔCDB (son semejantes)
x
Luego;
Euclidea_teoremas_001
Que es lo mismo que:
Euclides_teoremas_002

x
x
De forma análoga se tiene queΔACB  ~  ΔADC (a la derecha) ,
entonces
Euclides_teoremas_003
Que es lo mismo que:
Euclides_teorema_004

Vistas las fórmulas a las que arribamos utilizando la media proporcional geométrica, podemos enunciar el primer Teorema de Euclides también de la siguiente forma:
“En un triangulo rectángulo, el cuadrado de un cateto es igual al producto de la hipotenusa por la proyección del mismo cateto sobre la hipotenusa”.
Por lo tanto,
Euclides_teoremas_009
Ejemplos:
x
1) En la figura a la derecha, determinar a,
si c = 7 y q = 4
Euclides_teoremas_010



x
2) En la figura a la izquierda, determinar b
si c = 4 y p = 1

Euclides_teoremas_011


Teorema de Euclides relativo a la altura

“En un triángulo rectángulo la altura correspondiente a la hipotenusa es media proporcional geométricaentre los segmentos que dicha altura determina en ella.”
x
Se sabe que ΔADC ~ ΔCDB (semejantes, en la figura a la derecha); por lo tanto, sus lados homólogos (correspondientes) son proporcionales.
Sea hc  (CD) la altura de la hipotenusa (AB = c)
Entonces:
Euclides_teoremas_005
Reemplazando:
Euclides_teoremas_006
Llegamos a: Euclides_teormeas_007
A partir de esta última fórmula, y tal como en el caso del primer teorema de Euclides, este segundo teorema también se puede expresar de la siguiente manera:
“En un triangulo rectángulo, el cuadrado de la altura de la hipotenusa (hc) es equivalente al producto de las proyecciones de los catetos en la hipotenusa”.
Por lo tanto,  si   h2 = p • q    
entonces     Euclides_teoremas_012        
Ejemplos:
x
1) En la figura a la derecha, determinar h,
si p = 2 y q = 8

Euclides_Teoremas_013


x
2) En la figura a la izquierda, determinar h,
si p = 3 y q = 12

Euclides_teoremas_014


La altura correspondiente a la hipotenusa (hc)de un triángulo también se puede obtener a partir de las medidas de los lados del triángulo, haciendo:
Euclides_Teoremas_015

No hay comentarios.:

Publicar un comentario